User Tools

Site Tools


visual3d:documentation:modeling:segments:transforming_segment_moment_of_inertia

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
visual3d:documentation:modeling:segments:transforming_segment_moment_of_inertia [2024/06/19 12:49] sgrangervisual3d:documentation:modeling:segments:transforming_segment_moment_of_inertia [2024/07/17 15:45] (current) – created sgranger
Line 1: Line 1:
-{{{{{{{{{{{{{{{{{{||+====== Transforming Segment Moment of Inertia ======
  
-transforming moment of inertia from one coordinate system into another coordinate system+|| 
 + 
 +Transforming moment of inertia from one Coordinate System into Another Coordinate System
  
 \\ \\
  
  
-let the inertia tensor of segment (foot or shank) in it’s own local coordinate system (f) be given:+Let the Inertia Tensor of Segment (foot or shank) in it’s own local coordinate system (f) be given:
  
-segmentinertia_1.gif\\+{{:SegmentInertia_1.gif}}\\
  
  
-**note:** these are the values stored in visual3d and viewable in the segment properties.+**Note:** These are the values stored in Visual3D and viewable in the segment properties.
  
-find the value of this inertia tensor in any other reference frame (for example, ground) using the following equation:+Find the value of this inertia tensor in any other reference frame (for example, ground) using the following equation:
  
-segmentinertia_2.gif\\+{{:SegmentInertia_2.gif}}\\
  
  
-where segmentinertia_3.gif is the rotation matrix that transforms a vector from it's own coordinate system (lcs) to the ground coordinate system+Where {{:SegmentInertia_3.gif}} is the rotation matrix that transforms a vector from it's own coordinate system (lcs) to the ground coordinate system
  
-and segmentinertia_4.gif is its transpose.+and {{:SegmentInertia_4.gif}} is its transpose.
  
-the above expression does not include the terms due to the parallel axis theorem (segmentinertia_5.gif) which are:+The above expression does not include the terms due to the parallel axis theorem ({{:SegmentInertia_5.gif}}) which are:
  
-segmentinertia_6.gif\\+{{:SegmentInertia_6.gif}}\\
  
  
 where the vector s defines the location of hte segment's center of mass relative to ground. where the vector s defines the location of hte segment's center of mass relative to ground.
  
-the total inerties segmentinertia_7.gif for the segment is:+The total Inerties {{:SegmentInertia_7.gif}} for the segment is: 
 + 
 +{{:SegmentInertia_8.gif}}\\
  
-segmentinertia_8.gif\\ 
  
 +To find the total moment of inertia of all segments relative to ground you add the individual segment inertias:
  
-to find the total moment of inertia of all segments relative to ground you add the individual segment inertias:+{{:SegmentInertia_9.gif}}\\
  
-segmentinertia_9.gif\\ 
  
 +This entire procedure is outlined nicely by Fred Yeadon in the following series of articles.
  
-this entire procedure is outlined nicely by fred yeadon in the following series of articles.+**Yeadon, M.R.** (1993). The biomechanics of twisting somersaults. Part I: Rigid body motions. Journal of Sports Sciences 11, 187-198.
  
-**yeadonm.r.** (1993). the biomechanics of twisting somersaults. part irigid body motionsjournal of sports sciences 11, 187-198.+**YeadonM.R.** (1993). The biomechanics of twisting somersaults. Part IIContact twistJournal of Sports Sciences 11, 199-208.
  
-**yeadonm.r.** (1993). the biomechanics of twisting somersaults. part iicontact twist. journal of sports sciences 11, 199-208.+**YeadonM.R.** (1993). The biomechanics of twisting somersaults. Part IIIAerial twist. Journal of Sports Sciences 11, 209-218.
  
-**yeadonm.r.** (1993). the biomechanics of twisting somersaults. part iiiaerial twistjournal of sports sciences 11, 209-218.+**YeadonM.R.** (1993). The biomechanics of twisting somersaults. Part IVPartitioning performance using the tilt angleJournal of Sports Sciences 11, 219-225.
  
-**yeadon, m.r.** (1993). the biomechanics of twisting somersaults. part iv: partitioning performance using the tilt angle. journal of sports sciences 11, 219-225. 
  
  
-}}}}}}}}}}}}}}}}}} 
visual3d/documentation/modeling/segments/transforming_segment_moment_of_inertia.1718801351.txt.gz · Last modified: 2024/06/19 12:49 by sgranger