User Tools

Site Tools


visual3d:documentation:pipeline:model_based_data_commands:model_angular_momentum

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
visual3d:documentation:pipeline:model_based_data_commands:model_angular_momentum [2024/07/12 14:05] – created sgrangervisual3d:documentation:pipeline:model_based_data_commands:model_angular_momentum [2024/11/01 14:28] (current) – Clean-up in progress. wikisysop
Line 1: Line 1:
-====== MODEL_ANGULAR_MOMENTUM ======+===== MODEL ANGULAR MOMENTUM =====
  
-{{modelAngMom.jpg}} +{{:modelAngMom.jpg}} 
-For more information on Angular Momentum see [[[http://en.wikipedia.org/wiki/Angular_momentum|here]]]+ 
 +This page focuses on the the MODEL_ANGULAR_MOMENTUM model-based item in Visual3D. A full discussion on the theoretical underpinnings for Angular Momentum as a quantity can be found on [[https://en.wikipedia.org/wiki/Angular_momentum|Wikipedia]].
  
 ==== Angular Momentum of a Particle ==== ==== Angular Momentum of a Particle ====
  
-Given a particle with momentum //p = m v//. +Given a particle with momentum (**p**) 
-The angular momentum (//L//) of this particle about a distal point is: + 
-//L= r x p// +<code> 
-{{AngularMomentOfParticle.jpg}}+p = m v 
 +</code> 
 + 
 +The angular momentum (**L**) of this particle about a distal point is: 
 + 
 +<code> 
 +L= r x p 
 +</code> 
 + 
 +{{:AngularMomentOfParticle.jpg}} 
 ==== Model Center of Mass (COM) ==== ==== Model Center of Mass (COM) ====
  
-The center of mass of an object is a theoretical point where all of the object’s mass can be considered to be concentrated +The center of mass of an object is a theoretical point where all of the object’s mass can be considered to be concentrated. The Center of Mass of the model can be computed from the location of the center of mass of each segment. 
-Compute the Center of Mass of the model from the location of the center of mass of each segment. + 
-{{AngularMomentum.jpg}}+{{:AngularMomentum.jpg}} 
 Total Mass of the Model Total Mass of the Model
-{{MTotal.jpg}}+ 
 +{{:MTotal.jpg}} 
 Location of the center of mass of the model. Location of the center of mass of the model.
-{{RCom.jpg}}+ 
 +{{:RCom.jpg}} 
 ==== Segment COM relative to Model COM ==== ==== Segment COM relative to Model COM ====
  
-Vector from the COM of the Model to the COM of a segment. (e.g. Red vector in the figure above) +The vector from the Model'COM to the COM of a segment is illustrated by the red vector in the figure below: 
-{{RcomLab.jpg}}+ 
 +{{:RcomLab.jpg}} 
 ==== Velocity of the COM ==== ==== Velocity of the COM ====
  
 Velocity of a Segment COM relative to the laboratory Velocity of a Segment COM relative to the laboratory
-{{VnLab.jpg}}+ 
 +{{:VnLab.jpg}} 
 Velocity of the Model COM relative to the laboratory Velocity of the Model COM relative to the laboratory
-{{VcomLab.jpg}}+ 
 +{{:VcomLab.jpg}} 
 Velocity of a vector from the Segment COM to the Model COM in Laboratory coordinates. Velocity of a vector from the Segment COM to the Model COM in Laboratory coordinates.
-{{VnComLab.jpg}}+ 
 +{{:VnComLab.jpg}} 
 ==== Segment Angular Moment in Local Coordinates ==== ==== Segment Angular Moment in Local Coordinates ====
  
-Compute {{IwSeg.jpg}} in Local Coordinates +Compute {{:IwSeg.jpg}} in Local Coordinates 
-{{WnLab.jpg}} = Segment angular velocity in Lab Coordinates + 
-{{Tn.jpg}} = Segment orientation matrix, which transforms a vector from Lab coordinates to Local coordinates+{{:WnLab.jpg}} = Segment angular velocity in Lab Coordinates 
 + 
 +{{:Tn.jpg}} = Segment orientation matrix, which transforms a vector from Lab coordinates to Local coordinates 
 Compute the segment angular velocity in Segment Local Coordinates Compute the segment angular velocity in Segment Local Coordinates
-{{TnWn.jpg}} + 
-{{IWlocal.jpg}} = Segment Angular Momentum in Local Coordinates+{{:TnWn.jpg}} 
 + 
 +{{:IWlocal.jpg}} = Segment Angular Momentum in Local Coordinates 
 ==== Segment Angular Moment in Lab Coordinates ==== ==== Segment Angular Moment in Lab Coordinates ====
  
 Segment Angular Momentum in Lab Coordinates Segment Angular Momentum in Lab Coordinates
-{{IWlab.jpg}}+ 
 +{{:IWlab.jpg}} 
 ==== Angular Momentum of one Segment Relative to the COM ==== ==== Angular Momentum of one Segment Relative to the COM ====
  
 The angular momentum for one segment about the total body center of mass in Laboratory Coordinates is: The angular momentum for one segment about the total body center of mass in Laboratory Coordinates is:
-{{LnLab.jpg}}+ 
 +{{:LnLab.jpg}} 
 ==== Angular Momentum of Model Relative to the COM ==== ==== Angular Momentum of Model Relative to the COM ====
  
 Now that all the angular moment values in a common coordinate system, we can simply add them. Now that all the angular moment values in a common coordinate system, we can simply add them.
-{{LtotalLab.jpg}} 
-The angular momentum for the total body about the total body center of mass is: 
-{{AngularMomentumModel.jpg}} 
-Where N = total number of segments 
-Note: The tricky calculation is {{ILab.jpg}} so the algorithm works around this issue by not actually calculating the value. 
-==== Courtesy of Fred Yeadon ==== 
  
-Much of the contents of this page are courtesy of Fred Yeadon.+{{:LtotalLab.jpg}}
  
-Yeadon, M.R. 1993. The biomechanics of twisting somersaults. Part I: Rigid body motions. Journal of Sports Sciences 11, 187-198.+The angular momentum for the total body about the total body center of mass is:
  
-Yeadon, M.R. 1993. The biomechanics of twisting somersaults. Part IIContact twist. Journal of Sports Sciences 11, 199-208.+{{:AngularMomentumModel.jpg}}
  
-Yeadon, M.R. 1993. The biomechanics of twisting somersaults. Part III: Aerial twist. Journal of Sports Sciences 11, 209-218.+Where N = total number of segments
  
-Yeadon, M.R. 1993. The biomechanics of twisting somersaultsPart IV: Partitioning performance using the tilt angle. Journal of Sports Sciences 11, 219-225. +Note: The tricky calculation is {{:ILab.jpg}} so the algorithm works around this issue by not actually calculating the value.
- +
-Yeadon, M.R. 1993. Twisting techniques used by competitive divers. Journal of Sports Sciences 11, 4, 337-342.+
  
 +==== References ====
  
 +Much of the contents of this page are courtesy of Fred Yeadon.
  
 +  - Yeadon, M.R. 1993. The biomechanics of twisting somersaults. Part I: Rigid body motions. Journal of Sports Sciences 11, 187-198.
 +  - Yeadon, M.R. 1993. The biomechanics of twisting somersaults. Part II: Contact twist. Journal of Sports Sciences 11, 199-208.
 +  - Yeadon, M.R. 1993. The biomechanics of twisting somersaults. Part III: Aerial twist. Journal of Sports Sciences 11, 209-218.
 +  - Yeadon, M.R. 1993. The biomechanics of twisting somersaults. Part IV: Partitioning performance using the tilt angle. Journal of Sports Sciences 11, 219-225.
 +  - Yeadon, M.R. 1993. Twisting techniques used by competitive divers. Journal of Sports Sciences 11, 4, 337-342.
visual3d/documentation/pipeline/model_based_data_commands/model_angular_momentum.1720793121.txt.gz · Last modified: 2024/07/12 14:05 by sgranger