Documentation Site Map Main Page Reference List Motion Capture Visual3D Overview Visual3D Installation License Activation Getting Started Visual3D Documentation Overview Pipeline Commands Reference Expressions Overview CalTester Mode Overview List of Tutorials Visual3D Examples Overview Troubleshooting Sift Sift Overview Installation Getting Started Sift Documentation Overview Knowledge Discovery for Biomechanical Data Tutorial Overview Troubleshooting Inspect3D Inspect3D Overview Inspect3D Installation Overview Inspect3D Getting Started Overview Inspect3D Documentation Overview Knowledge Discovery in Inspect3D Inspect3D Tutorials Overview Troubleshooting DSX Suite DSX Overview DSX Definitions DSX Suite Installation DSX Tutorials DSX Release Notes xManager Overview PlanDSX Overview Surface3D Overview Orient3D Overview CalibrateDSX Overview Locate3D Overview X4D Overview
This is an old revision of the document!
here]]] ===== angular momentum of a particle ===== given a particle with momentum //p = m v//. the angular momentum (//l//) of this particle about a distal point is: //l= r x p// angularmomentofparticle.jpg ===== model center of mass (com) ===== the center of mass of an object is a theoretical point where all of the object’s mass can be considered to be concentrated compute the center of mass of the model from the location of the center of mass of each segment. angularmomentum.jpg total mass of the model mtotal.jpg location of the center of mass of the model. rcom.jpg ===== segment com relative to model com ===== vector from the com of the model to the com of a segment. (e.g. red vector in the figure above) rcomlab.jpg ===== velocity of the com ===== velocity of a segment com relative to the laboratory vnlab.jpg velocity of the model com relative to the laboratory vcomlab.jpg velocity of a vector from the segment com to the model com in laboratory coordinates. vncomlab.jpg ===== segment angular moment in local coordinates ===== compute iwseg.jpg in local coordinates wnlab.jpg = segment angular velocity in lab coordinates tn.jpg = segment orientation matrix, which transforms a vector from lab coordinates to local coordinates compute the segment angular velocity in segment local coordinates tnwn.jpg iwlocal.jpg = segment angular momentum in local coordinates ===== segment angular moment in lab coordinates ===== segment angular momentum in lab coordinates iwlab.jpg ===== angular momentum of one segment relative to the com ===== the angular momentum for one segment about the total body center of mass in laboratory coordinates is: lnlab.jpg ===== angular momentum of model relative to the com ===== now that all the angular moment values in a common coordinate system, we can simply add them. ltotallab.jpg the angular momentum for the total body about the total body center of mass is: angularmomentummodel.jpg where n = total number of segments note: the tricky calculation is ilab.jpg so the algorithm works around this issue by not actually calculating the value. ===== courtesy of fred yeadon ===== much of the contents of this page are courtesy of fred yeadon. yeadon, m.r. 1993. the biomechanics of twisting somersaults. part i: rigid body motions. journal of sports sciences 11, 187-198. yeadon, m.r. 1993. the biomechanics of twisting somersaults. part ii: contact twist. journal of sports sciences 11, 199-208. yeadon, m.r. 1993. the biomechanics of twisting somersaults. part iii: aerial twist. journal of sports sciences 11, 209-218. yeadon, m.r. 1993. the biomechanics of twisting somersaults. part iv: partitioning performance using the tilt angle. journal of sports sciences 11, 219-225. yeadon, m.r. 1993. twisting techniques used by competitive divers. journal of sports sciences 11, 4, 337-342. }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}